
In this lecture, we will introduce Lab 6 and also some of the ideas behind the
challenges, which will be published next week.

This lecture will provide some basic background for these lab sessions. In particular,
you will learn how to detect beat and handle real-time data capture.

Lecture 14 Slide 1PYKC 8 March 2024 DE2 – Electronics 2

Lecture 14

Dancing Segway and Analysis
of Musical Signal

Peter Cheung

Dyson School of Design Engineering

URL: www.ee.ic.ac.uk/pcheung/teaching/DE2_EE/
E-mail: p.cheung@imperial.ac.uk

This slide shows the aims and objectives of the challenges outside the six laboratory
sessions. So far, I have covered the necessary theory for aims 1, 2 and 4, either
through lectures or through the lab experiments. I will be covering the topic of
feedback control starting next lecture.

Lecture 14 Slide 2PYKC 8 March 2024 DE2 – Electronics 2

Segway Challenge – Aim and Objective
 To demonstrate your understanding of four topics in the Electronics 2

modules that are important to a design engineer:
1. Signal processing;
2. System analysis and design;
3. Feedback control;
4. Real-time embedded system

 The various challenges are designed to achieve the following:
1. Apply what you have learned in this module to a real-life problem;
2. Learn to combine offline processing using Matlab with real-time processing

using MicroPython;
3. Apply embedded system concepts and techniques such as sampling, buffer,

interrupts, scheduling etc.;
4. Have fun!

For any module you take on your course, you should be very clear about learning
outcomes. Here is the project’s learning outcomes – stating what you should be
able to do when you have finished this project.

Lecture 14 Slide 3PYKC 8 March 2024 DE2 – Electronics 2

Segway Project – Learning Outcomes
 By the end of the challenges, you will be able to do most if not all of these:

1. Process music signals using signal processing techniques to extract its signal
characteristics such as rhythm (e.g. beat), spectral contents (e.g. colour) and
mood (e.g. swinging, loud, quiet);

2. Creatively map the music characteristics to dance routines (manual);
3. Analyse music signals in real-time on the microcontroller to synchronize dance

movement to music;
4. Balance a mini-Segway using a PID controller so that it moves around on two

wheels under the control of your phone;
5. Implement the mini-Segway that autonomously dance to live music.

This is a video showing different groups achievement from a previous year. Some
Segways only perform dance to music. Others can do dance and balance at the
same time. The final clip shows driving a self-balancing Segway with a camera
onboard!

Lecture 14 Slide 4PYKC 8 March 2024 DE2 – Electronics 2

Electronics 2 – from the past!

I now want to introduce you to Lab 6. The goal for Wednesday’s lab is to capture
audio data in real-time using interrupts, so that you can perform beat detection.
Eventually you will apply what you learn from Lab 6 to synchronize your dance
moves to the beats of the music.

You will also explore FIR filter (moving average type only), and to drive the Neopixel
array to have dancing light with live music!

Lecture 14 Slide 5PYKC 8 March 2024 DE2 – Electronics 2

Capturing real-time audio samples
 Sampling at 8kHz – assume that music signal under 4kHz
 Should use anti-aliasing filter (but not on PyBench)
 To capture the audio signal, you need to:

1. Set up a timer to produce an interrupt every 125 microsecond
2. Capture a microphone sample and put it into a buffer s_buf (i.e. an array) which

stores N samples in sequence (N is 160 in my code, but can be changed)
3. When the buffer is full (i.e. N samples capture), set buffer_full to TRUE (this is

called a semaphore or a flag)

This is how you can program a timer (Timer 7) to produce an interrupt every 125
microseconds. The interrupt service routine is specified with the callback function.

Ask yourself this question: what does the microprocessor do when an interrupt
occurs?

The answer is:
1. Assuming the microprocessor is enabled to respond to interrupts, it will

complete the current instruction;
2. It stores away (in some memory called “stack”) the location of the next

instruction, so that it can return later to continue your main program;
3. It stores away the internal values of the processor (called processor state or

contex);
4. It jumps to the interrupt service routine and do whatever that specifies;
5. On completing the ISR, it recovers the state of the processor (or contex);
6. It return to the place in the main program where it was previously interrupted.

Lecture 14 Slide 6PYKC 8 March 2024 DE2 – Electronics 2

Setting up the Timer to generate an interrupt
 The microcontroller used on Pybench has many timers which can be

programmed to produce interrupts
 We will use Timer 7 to generate the sampling interrupt
 Our interrupt service routine (ISR) is isr_sampling

We need to take N samples of audio data in order to work out when a beat occurs.
To do that, we use something called a buffer.

There is a type of buffer known as FIFO: first-in first-out buffer. This is shown in the
diagram below. This is like a queue – queue to get onto a bus.

Lecture 14 Slide 7PYKC 8 March 2024 DE2 – Electronics 2

Buffering of signals
 In all the algorithms considered so far, we need to store N data samples.

Data could be input music signal (from microphone) x[n], or instantaneous
energy r[n].

 In Matlab, this is easy. Matlab perform analysis offline, and you can store
the signal is a huge array.

 In real-time system, this is not practical (nor possible!).
 Solution: implement a buffer:

x[0] 0n = 0 0 0 0 0

x[1] x[0]n = 1 0 0 0 0

x[2] x[1]n = 2 x[0] 0 0 0

x[3] x[2]n = 3 x[1] x[0] 0 0

Using a FIFO is not efficient because you are moving data around a lot – that costs
time and energy.

A better method is to use a concern call pointer. This is shown in the diagram
above. You fill an area of memory (or array) in sequence, and move the the pointer
(shown as arrow) up a position as shown above.

Note that if you keep incrementing the pointer, it wraps around at the end back to
the beginning in a circular way. This is known as a circular buffer.

Lecture 14 Slide 8PYKC 8 March 2024 DE2 – Electronics 2

Efficient Buffering Method
 Instead of moving lots of data, you can use a “pointer” to specify where to

put the new data:
 Use x[ptr], and increment ptr each time a new data comes in.
 Wraparound to 0 when ptr reaches N: ptr = (ptr + 1) % N

x[0] 0n = 0 0 0 0 0

x[0] x[1]n = 1 0 0 0 0

x[0] x[1]n = 2 x[2] 0 0 0

x[0] x[1]n = N-1 x[2] x[3] …… x[N-1]

x[N] x[1]n = N x[2] x[3] …… x[N-1] Wrap-around

Now let us consider how we write code in MicroPython to achieve all these. You
will be doing it tomorrow in the Lab.

The interrupt service routine (ISR) is isr_sampling. We have to make ptr and
buffer_full global variables because we need to access these OUTSIDE the routine.
s_buf is also global – defined OUTSIDE the ISR.

The rest of the code is simple.

Lecture 14 Slide 9PYKC 8 March 2024 DE2 – Electronics 2

Interrupt Service Routine - isr_sampling
 The ISR do the following:

1. Read microphone data
2. Store it in the next location in array s_buf [ptr] – ptr is the index to the array
3. Increment index by 1
4. If index reaches N, buffer is full – set the flag (semaphore)

Now we will consider three methods in determining when a beat occurs. The
simplest way is the calculate the instantaneous energy of the sound signal. We have
done this before. Once you have calculated the instantaneous energy for every
20 msec (160 samples at 8kHz sampling frequency), we can work out the periodicity
of this energy to obtain the beat frequency (i.e. beats/minute).

In addition, you may also find the spectrum of x[n]. This gives you some information
about the “colour” of the music. However, I found that it is rather difficult to
deduce characteristic of music from the spectrum.

Lecture 14 Slide 10PYKC 8 March 2024 DE2 – Electronics 2

Beat detection using instantaneous energy (method 1)
 Assuming that sampling frequency is 8kHz
 We keep the current sample and N-1 previous samples of input x[n]
 Compute instantaneous energy of sound signal x[n] in, say, 20 msec

window (N = 160):

 One approach is to take the Fourier transform of the energy signal 𝜌[n].
 Collect 1-2 second worth (i. e. 50	to	100	𝜌	[n] values) and perform FFT on

Matlab.

 The fundamental frequency of the spectrum r [jw] provides an estimate of
the beat frequency.

𝜌[𝑛] =.
!"#

$%&
𝑥[𝑛 − 𝑘]'

Second method is an improvement. Apart from computing the instantaneous
energy, you can also compute the steady state energy by averaging 100
instantaneous energy readings. A beat is deemed to have occurred if determining
the energy rises above a threshold.

Lecture 14 Slide 11PYKC 8 March 2024 DE2 – Electronics 2

Beat detection using instantaneous energy (method 2)
 Compute instantaneous energy of sound signal x[n] in 20 msec window:

 Compute steady state local energy by averaging 100 instantaneous energy
values 𝜌 0 to 𝜌 99 	:

 Beat occurs in the window when 𝜌 𝑛 > 𝑏	×	< 𝜌 > , where b is a
threshold chosen for the music.

 Method useful for real-time synchronisation (running MicroPython on
Pybench).

𝜌[𝑛] =.
!"#

$%&
𝑥[𝑛 − 𝑘]'

< 𝜌 >≈
1
100

.
("#

&&
𝜌[𝑛 − 𝑗]

Finally, you can even adapt the threshold value b according the music itself by
computing the variance of the instantaneous energy. This is shown above.

Lecture 14 Slide 12PYKC 8 March 2024 DE2 – Electronics 2

Beat detection using instantaneous energy (method 3)
 The problem of the previous method is that if you choose the wrong value

for b, the algorithm will not work well.
 The threshold b need to adapt to the music itself. How?
 Compute the variance v[n] of the instantaneous energy 𝜌[n] over 20msec

window:

 Now computer the threshold value b as:

 and try b = 1.5, and a = 0.0025

𝑣 𝑛 =
1
100.("#

&&
(𝜌 𝑛 − 𝑗 −	< 𝜌 >)'

𝑏 = 	𝛽 − 𝛼×𝑣 𝑛

Finally, you could include the frequency spectrum information in order to determine
the beat. However, I don’t recommend you doing this on MicroPython and Pybench
board. This is because uPy is not fast, and our challenges involve three different
things:
1. Capture music in real-time and extract beat;
2. Drive motors to dance to the music;
3. Control the Segway so that it self balance.

There is just not enough clock cycles left to do a FFT with the current hardware
setup.

Lecture 14 Slide 13PYKC 8 March 2024 DE2 – Electronics 2

Beat detection using Frequency selected energy
 Algorithm so far does not consider the frequency content of the music

sound. That is, we ignore the frequency spectrum of the signal – it is colour
blind!

 We know that beat information in a signal is actually frequency band
related.

 Beat from drums – low frequency; beat from cymbal or triangle – high
frequency.

 Therefore, assuming that our music is drum heavy, you can low pass filter
the signal first before performing the previous beat detection algorithm.

One of the Challenges is make the Segway (with stabilizers) dance to music. For this
you need to somehow generate a dance routine in order to synchronize to the beat
of the music.

You should store the dance routine as a text file and transfer that to the SD card.
For example, you could have a code such as:

F4B4R4L4….

For forward four beats, backward 4 beats, right turn 4 beats, left turn 4 beats ….

Lecture 14 Slide 14PYKC 8 March 2024 DE2 – Electronics 2

Colour of Music
 By analysing the spectrum of music using Matlab, you can also determine

whether the music segment is vigorous or melodic.
 Based on its spectrum, you can determine how to map music segment to

dance move.
 You should then store the dance move as ASCII characters in a text file,

which can then be transferred to Pybench using the Micro SD card.

Since motor coils are essentially inductors, they have low DC impedances (resistance of the
wiring). Hence when driving motors, we need to use special driver chips.
The driver chip you used in Lab 5 (the TB6612) is often called the H-Bridge Driver. Shown
here is the simplified block diagram. There are four transistors connected to the supply rail
and ground. (It doesn’t matter which is which because the circuit is symmetrical.) The
motor is connected in the middle forming the horizontal link of the H. The transistors are
MOSFETs (metal oxide silicon field effect transistors) which is acting like a voltage controlled
switch. When a ‘1’ or high voltage is applied to the gate control terminal, the transistor
turns ON and conduct electricity. If a ‘0’ or low voltage is applied, the transistor is OFF. So
the top diagram shows a configuration that results in the supply voltage being applied to
the left terminal of the motor. The right terminal of the motor is grounded, and the motor
turns in one direction. Reversing the control to the transistors results in the motor turning
in the other direction.
If you use an AND gate at the control input, you can also add a PWM signal to control the
speed of the motor.
Basically the ‘1’ and ‘0’ control signals are the A0 and A1 signals on the TB6612. The PWM
signal is what you apply to the input of the AND gate.

Now you know how the TB6612 works.

Lecture 14 Slide 15PYKC 8 March 2024 DE2 – Electronics 2

Package to drive motors

 The package motor.py is available to help you drive the two motors with ease. It will
make developing your milestone code much easier.

 You must first import the package, and then create the motor object:

 Thereafter, you can use the following methods:
 The first five methods are

useful to control speed of the
motors using the CONTROL
PAD via Bluetooth

 The last six methods are
directly controlling the
movements of the two motors
(in an open-loop manner)

 v is not really the speed, but
the PWM drive value to the
motors.

